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Abstract

The growing gap between sustained and peak performanceénitisc applications is a well-known
problem in high performance computing. The recent devetayrof parallel vector systems offers the
potential to reduce this gap for many computational scieuckes and deliver a substantial increase in
computing capabilities. This paper examines the intrapedformance of the NEC SX-6 vector proces-
sor, and compares it against the cache-based IBM Power3amel®superscalar architectures, across a
number of key scienti c computing areas. First, we presbatgerformance of a microbenchmark suite
that examines many low-level machine characteristics.tNex study the behavior of the NAS Parallel
Benchmarks. Finally, we evaluate the performance of ségerenti c computing codes. Overall re-
sults demonstrate that the SX-6 achieves high performameelarge fraction of our application suite
and often signi cantly outperforms the cache-based aechitres. However, certain classes of applica-
tions are not easily amenable to vectorization and wouldiregxtensive algorithm and implementation
reengineering to utilize the SX-6 effectively.

1 Introduction

The rapidly increasing peak performance and generalityupésscalar cache-based microprocessors long
led researchers to believe that vector architectures ittt promise for future large-scale computing sys-
tems [15]. Due to their cost effectiveness, an ever-growragtion of today's supercomputers employ
commodity superscalar processors, arranged as systeme@idnnected SMP nodes. However, the grow-
ing gap between sustained and peak performance for saiegpplications on such platforms has become
well known in high performance computing.

The recent development of parallel vector systems offerpttential to reduce this performance gap for
a signi cant number of scienti ¢ codes, and to increase catapional power substantially [14]. This was
highlighted dramatically when the Japanese Earth Simu[@laesults were published [20, 21, 24]. The
Earth Simulator, based on NEC SX-8ector technologyachieves ve times the LINPACK performance
with almost half the number of processors of the IBM SP-base@| White, one of the world's most pow-
erful supercomputers [8], built usirspperscalar technologyin order to quantify what this new capability
entails for scienti c communities that rely on modeling asichulation, it is critical to evaluate these two
microarchitectural approaches in the context of demandimgputational algorithms.
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!Also referred to as the Cray SX-6 due to Cray's agreement tixeh&AIEC's SX line.



In this paper, we compare the performance of the NEC SX-6vegrbcessor against the cache-based
IBM Power3 and Power4 architectures for several key scentimputing areas. We begin by evaluating
memory bandwidth and MPI communication speeds, using & satoobenchmarks. Next, we evaluate ve
of the well-known NAS Parallel Benchmarks (NPB) [4, 11],ngsproblem size Class B. Finally, we present
performance results for a number of numerical codes froensici computing domains, including plasma
fusion, astrophysics, uid dynamics, materials sciencagnetic fusion, and molecular dynamics. Since
most modern scienti ¢ codes are already tuned for cacheéagstems, we examine the effort required to
port these applications to the vector architecture. Wedapuserial and intranode parallel performance of
our application suite, while isolating processor and mgnhehavior. Future work will explore the behavior
of multi-node vector con gurations.

2 Architectural Speci cations

We brie y describe the salient features of the three paratehitectures examined. Table 1 presents a
summary of their intranode performance characteristicicl that the NEC SX-6 has signi cantly higher
peak performance, with a memory subsystem that featureea th six times larger bytes/ op ratio than
the IBM Power systems.

Node | CPU/| Clock Peak Memory BW Peak Memory Latency
Type | Node | (MHz) | (G ops/s) (GB/s) Bytes/Flop ( sec)
Power3| 16 375 15 1.0 0.67 8.6
Power4| 32 | 1300 5.2 6.4 1.2 3.0
SX-6 8 500 8.0 32 4.0 2.1

Table 1: Architectural speci cations of the Power3, Powerdd SX-6 nodes.

2.1 Power3

The IBM Power3 was rst introduced in 1998 as part of the RB®BBeries. Each 375 MHz processor
contains two oating-point units (FPUs) that can issue atiply-add (MADD) per cycle for a peak per-
formance of 1.5 GFlops/s. The Power3 has a short pipelinalgftoree cycles, resulting in relatively low
penalty for mispredicted branches. The out-of-order &echire uses prefetching to reduce pipeline stalls
due to cache misses. The CPU has a 32KB instruction cache H28KB 128-way set associative L1 data
cache, as well as an 8MB four-way set associative L2 cacHeitgibwn private bus. Each SMP node con-
sists of 16 processors connected to main memory via a cnodgldti-node con gurations are networked
via the IBM Colony switch using an omega-type topology.

The Power3 experiments reported in this paper were condlocta single Nighthawk 1l node of the 208-
node IBM pSeries system (named Seaborg) running AlX 5.1gllBaEnvironment 3.2, C 6.0, Fortran 8.1,
and located at Lawrence Berkeley National Laboratory.

2.2 Power4d

The pSeries 690 is the latest generation of IBM's RS/600@seEach 32-way SMP consists of 16 Power4
chips (organized as four MCMs), where a chip contains two@k& processor cores. Each core has two
FPUs capable of a fused MADD per cycle, for a peak performafice2 G ops/s. Two load-store units,

each capable of independent address generation, feeddhintyble precision MADDers. The superscalar
out-of-order architecture can exploit instruction levargllelism through its eight execution units. Up to



eight instructions can be issued each cycle into a pipelinetsire capable of simultaneously supporting
more than 200 instructions. Advanced branch predictioilsare minimizes the effects of the relatively
long pipeline (six cycles) necessitated by the high frequeatesign.

Each processor contains its own private L1 cache (64KBunstn and 32KB data) with prefetch
hardware; however, both cores share a 1.5MB uni ed L2 ca€lestain data access patterns may therefore
cause L2 cache con icts between the two processing unite.diflectory for the L3 cache is located on-chip,
but the memory itself resides off-chip. The L3 is designed atand-alone 32MB cache, or to be combined
with other L3s on the same MCM to create a larger interleaesthe of up to 128MB. Multi-node Power4
con gurations are currently available employing IBM's @oly interconnect, but future large-scale systems
will use the lower latency Federation switch.

The Power4 experiments reported here were performed orgke siode of the 27-node IBM pSeries
690 system (named Cheetah) running AIX 5.1, Parallel Enmrent 3.2, C 6.0, Fortran 7.1, and operated
by Oak Ridge National Laboratory.

2.3 SX-6

The NEC SX-6 vector processor uses a dramatically diffeeeahitectural approach than conventional
cache-based systems. Vectorization exploits regulaiiiehe computational structure to expedite uniform
operations on independent data sets. Vector arithmeticugisons involve identical operations on the ele-
ments of vector operands located in the vector register.yMaienti ¢ codes allow vectorization, since they
are characterized by predictable ne-grain data-paighelthat can be exploited with properly structured
program semantics and sophisticated compilers. The 500 8#4@ processor contains an 8-way replicated
vector pipe capable of issuing a MADD each cycle, for a peakopmance of 8 G ops/s per CPU. The
processors contain 72 vector registers, each holding 258t é4ords.

For non-vectorizable instructions, the SX-6 contains a @B scalar processor with a 64KB instruc-
tion cache, a 64KB data cache, and 128 general-purposdemsgidhe 4-way superscalar unit has a peak
of 1 G ops/s and supports branch prediction, data prefet:hand out-of-order execution. Since the vector
unit of the SX-6 is signi cantly more powerful than its scalarocessor, it is critical to achieve high vector
operation ratios, either via compiler discovery or explycihrough code (re-)organization.

Unlike conventional architectures, the SX-6 vector urtkkadata caches. Instead of relying on data lo-
cality to reduce memory overhead, memory latencies areeddskoverlapping pipelined vector operations
with memory fetches. The SX-6 uses high speed SDRAM with peakiwidth of 32GB/s per CPU: enough
to feed one operand per cycle to each of the replicated pige Each SMP contains eight processors that
share the node's memory. The nodes can be used as buildickshdblarge-scale multi-processor systems;
for instance, the Earth Simulator contains 640 SX-6 nodasyected through a single-stage crossbar.

The vector results in this paper were obtained on the singtke (8-way) SX-6 system (named Rime)
running SUPER-UX 12.1, C++ rev053, and F90 rev264 at thei@region Supercomputing Center
(ARSC) of the University of Alaska.

3 Microbenchmarks

This section presents the performance of a microbenchmaid that measures some low-level machine
characteristics such as memory subsystem behavior andrégather hardware support using STREAM[7];
and point-to-point communication, network/memory cotiten and barrier synchronizations via PMB [5].



3.1 Memory Access Performance

First we examine the low-level memory characteristics @f three architectures in our study. Table 2
presents asymptotic unit-stride memory bandwidth behafithe triad summationa(i) = b(i)+ s c(i),
using the STREAM benchmark [7]. It effectively captures geak bandwidth of the architectures, and
shows that the SX-6 achieves about 48 and 14 times the pexfmerof the Power3 and Power4, respectively,
on a single processor. Notice also that the SX-6 shows rblgipandwidth degradation for up to eight
tasks, while the Power3/4 drop by almost 50% for fully packedes.

\ P \ Power3\ Power4\ SX-6 \ 100000
1| 661 | 2292 | 31900
2| 661 | 2264 | 31830 10000

4| 644 2151 | 31875
8| 568 1946 | 31467
16| 381 1552 —
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Figure 1: Single-processor STREAM triad perfor-
mance (in MB/s) using regularly strided data.

Our next experiment concerns the speed of strided datasaooes single processor. Figure 1 presents
our results for the same triad summation, but using varioeiary strides. Once again, the SX-6 achieves
good bandwidth, up to two (three) orders of magnitude betien the Power4 (Power3), while showing
markedly less average variation across the range of stetieed. Observe that certain strides impact
SX-6 memory bandwidth quite pronouncedly, by an order of mtage or more. Analysis shows that
strides containing factors of two worsen performance dued®ased DRAM bank con icts. On the Power
architectures, a precipitous drop in data transfer raterrscior small strides (strides less than 20), due to
loss of cache reuse. This drop is more complex on the Powecéduse of the extra level of L3 cache.

Finally, Figure 2 presents the memory bandwidth of indiesdressing through vector triad gather and
scatter operations of various data sizes on a single procdss smaller sizes, the cache-based architectures
show better data rates for indirect access to memory. Hawierdarger sizes, the SX-6 is able to utilize its
hardware gather and scatter support effectively, outpmifg the cache-based systems.

3.2 MPI Performance

Message passing is the most widely used programming panafdig high-performance parallel systems.
The MPI library has become the de facto standard for messaggng. It allows both intranode and in-
ternode communications, thus obviating the need for hymagyramming schemes for distributed-memory
systems. Although MPI increases code complexity compardtsiiared-memory programming paradigms
such as OpenMP, its bene ts lie in improved control over datality and fewer global synchronizations.
Table 3 presents bandwidth gures obtained using the PallR$ Benchmark (PMB) suite [5], for
exchanging intranode messages of various sizes. The wsshmws the best-case scenario when only two
processors within a node communicate. Notice that the SXs&lgni cantly better performance, achieving
more than 19 (7) times the bandwidth of the Power3 (Poweont)ihe largest messages. The effects of
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Figure 2: Single-processor STREAM triad performance (in/8)RBising irregularly strided data of various

sizes: gather (left) and scatter (right).

network/memory contention are visible when all processdgtkin each SMP are involved in exchanging
messages. Once again, the SX-6 dramatically outperforenBdlwver architectures. For example, a message
containing 524288 () bytes, suffers 46% (68%) bandwidth degradation when &alyirating the Power3

(Power4), but only 7% on the SX-6.

8192 Bytes 131072 Bytes 524288 Bytes 2097152 Bytes
P | Power3| Power4] SX-6 | Power3| Power4| SX-6 | Power3] Power4| SX-6 | Power3 Power4] SX-6
2| 143 515 | 1578| 408 1760 | 6211 508 1863 | 8266| 496 1317 | 9580
4| 135 475 |1653| 381 1684 | 6232| 442 1772 | 8190| 501 1239 | 9521
8| 132 473 | 1588 343 1626 | 5981| 403 1638 | 7685| 381 1123 | 8753
16| 123 469 — 255 1474 | — 276 1300 | — 246 892 —
32| — 441 — — 868 — — 592 — — 565 —

Table 3: MPI send/receive performance (in MB/s) for varimessage sizes and processor counts.

Table 4 shows the overhead of MPI barrier synchronization ¢ec). As expected, the barrier overhead
on all three architectures increases with the number ofgssmrs. For the fully loaded SMP test case, the
SX-6 has 7.9 (4.2) times lower barrier cost than Power3 (Pé\wevhile for eight processors, the SX-6
performance is 5.4 and 2.0 times better than the Power3/4.

| P | Power3| Power4| SX-6 |

2| 171 6.7 5.0
4| 317 12.1 7.1
8| 544 19.8 | 10.0
16| 79.1 28.9 —
32 — 42.4 —

Table 4: MPI synchronization overhead (isec).



4 Scienti ¢ Kernels: NPB

The NAS Parallel Benchmarks (NPB) [4, 11] provide a good nedptound for evaluating the performance
of compact, well-understood applications. The NPB weratee at a time when vector machines were
considered no longer cost effective. Although they weremneat to be biased against any particular ar-
chitecture, the NPB were written with cache-based systanmdnd. Here we investigate the work involved
in producing good vector versions of the published NPB thatagpropriate for our current study: CG, a
sparse-matrix conjugate-gradient algorithm marked tBgintar stride resulting from indirect addressing;
MG, a quasi-multi-grid code marked by regular non-unitdgs resulting from communications between
grids of different sizes; FT, an FFT kernel; BT, a synthetiav solver that features simple recurrences in
a different array index in three different parts of the solufprocess; and LU, a synthetic ow solver fea-
turing recurrences in three array indices simultaneoushingd the major part of the solution process. We
do not report results for the SP benchmark, which is verylambo BT. Table 5 presents MPI performance
results for these codes on the Power3, Power4, and SX-6 fdiumeoroblem sizes, commonly referred to
as Class B (this was the largest problem size that ts in thenorg of a single node for all three target ma-
chines). Performance results are reported in M ops/s pecgssor. To characterize vectorization behavior
we also shovwaverage vector lengtfAVL) and vector operation ratiqVOR). Cache effects are accounted
for by TLB misses in % per cycle (TLB) and L1 hits in % per cydd]. All performance numbers except
M ops/s—which is reported by the benchmarks themselves—+evabtained using thepmcount tool on
the Power3/4 anftrace  on the SX-6.

Although the CG code vectorizes well and exhibits fairlydorector lengths, uni-processor SX-6 per-
formance is not very good due to the cost of gather/scatsrtieg from the indirect addressing. Multi-
processor SX-6 speedup degrades as expected with theioedinctector length. Power3/4 scalability is
good, mostly because uni-processor performance is so pediodhe serious lack of data locality.

MG also vectorizes well, and SX-6 performance on up to fowcessors is good. But a decreased
VOR and AVL, combined with the cost of frequent global symatizations to exchange data between small
grids, causes a sharp drop on eight processors. The milddkggyn of performance on the Power systems
is almost entirely due to the increasing cost of commurooatas cache usage is fairly constant, and TLB
misses even go down a bit due to smaller per-processor data se

FT did not perform well on the SX-6 in its original form, besauthe computations used a xed block
length of 16 words. But once the code was modi ed to use a bleakith equal to the size of the grid
(only three lines changed), SX-6 uni-processor perforraamproved markedly due to increased vector
length. Speedup from one to two processors is not good dueetonbe spent in a routine that does a local
data transposition to improve data locality for cache basadhines (this routine is not called in the uni-
processor run), but subsequent scalability is excellemieP3/4 scalability is fairly good overall, despite the
large communication volume, due to improved data localftthe multi-processor implementation. Note
that the Power4's absolute FT performance is signi canti§tér than its performance on CG, although the
latter exhibits fewer L1 and TLB misses. The sum of L1 and L& ¢eported here) cache hits on the Power4
is approximately the same for CG and FT for small numbers efgssors. We conjecture that FT, with its
better overall locality, can satisfy more memory requesisifL3 (not measured) than CG.

The BT baseline MPI code performed poorly on the SX-6, bezgubroutines in inner loops inhibited
vectorization. Also, some inner loops of small xed lengtkene vectorized, leading to very short vector
lengths. Subroutine inlining and manual expansion of sinalbs lead to long vector lengths throughout
the single-processor code, and good performance. Inage#® number of processors on the SX-6 causes
reduction of vector length (artifact of the 3D domain decosifion) and a concomitant deterioration of
the speedup. Power3 (Power4) scalability is fair up to 9 (k6tessors, but degrades severely on 16 (25)
processors. The reason is the fairly large number of synitations per time step that are costly on (almost)
fully saturated nodes. Experiments with a Power3 two-namepmitation involving 25 processors show a



CG

Power3 Power4 SX-6
P |Mops/s| L1 | TLB |[Mops/s| L1 | TLB | Mops/s | AVL | VOR
1 54 68.0 | 0.058 111 65.6 | 0.013 470 198.6| 96.9
2 55 71.9 | 0.039 111 69.9 | 0.014 258 147.0| 96.0
4 54 73.0 | 0.027 114 71.8 | 0.015 253 147.9| 96.5
8 55 79.7 | 0.031 151 77.0 | 0.020 131 117.1) 95.0
16 48 82.5 | 0.029 177 78.6 | 0.025 — — —
32 — — — 149 85.2 | 0.020 — — —
MG
Power3 Power4 SX-6
P |Mops/s| L1 | TLB |[Mops/s| L1 | TLB | Mops/s | AVL | VOR
1] 207 | 97.4 [ 0.067| 407 | 87.3 | 0.029] 2207 | 160.4] 97.2
2| 213 | 975 | 0.067| 542 | 87.5 | 0.037| 2053 | 160.1| 97.1
4 193 | 97.3 |0.061| 470 | 85.6 | 0.033| 1660 | 161.7] 97.1
8 185 97.4 | 0.049 425 90.0 | 0.028 620 104.7| 95.2
16 148 97.3 | 0.045 337 87.8 | 0.023 — — —
32 — — — 292 86.1 | 0.016 — — —
FT
Power3 Power4 SX-6
P [Mops/s| L1 [ TLB [Mops/s | L1 | TLB | Mops/s | AVL | VOR
1 133 91.1 | 0.204 421 52.6 | 0.086| 2021 | 256.0| 98.4
2 120 91.2 | 0.088 397 57.5 | 0.022 1346 | 255.7| 98.4
4 117 91.6 | 0.087 446 56.3 | 0.024| 1324 | 255.2| 98.4
8 112 91.6 | 0.084 379 57.1 | 0.022 1242 | 254.0| 98.4
16 95 91.3 | 0.070 314 58.4 | 0.020 — — —
32 — — — 259 60.7 | 0.016 — — —
BT
Power3 Power4 SX-6
P |[Mops/s| L1 [ TLB [Mops/s | L1 | TLB | Mops/s | AVL | VOR
1 144 96.8 | 0.039 368 86.9 | 0.023| 3693 100.9| 99.2
4 127 97.1 | 0.116 208 85.6 | 0.018| 2395 51.2| 98.7
9 122 97.0 | 0.032 269 87.5 | 0.017 — — —
16 103 97.3 | 0.025 282 87.5 | 0.011 — — —
25 — — — 208 98.4 | 0.013 — — —
LU
Power3 Power4 SX-6
P |[Mops/s| L1 | TLB |[Mops/s| L1 | TLB | Mops/s | AVL | VOR
1 186 96.6 | 0.304 422 75.2 | 0.087 740 100.2| 77.7
2 247 97.1 | 0.293 595 76.4 | 0.020 656 51.8| 77.2
4 257 97.1 | 0.421 636 77.5 | 0.092 684 53.0| 77.3
8 263 97.0 | 0.235 636 78.9 | 0.009 142 29.4| 745
16 267 96.9 | 0.173 558 79.6 | 0.007 — — —
32 — — — 566 78.4 | 0.006 — — —

Table 5: Per-processor performance of the NAS Parallel Beacks Class B.




remarkable recovery of the speedup.

LU fared poorly as expected on the SX-6, because data depepden the main part of the solver
prevented full vectorization, as evidenced by the low VORtfétrmance of the parts that do vectorize
degrades signi cantly as the number of processors incegéseause of the pencil domain decomposition in
the rst and second array dimensions. These factors do agtgtole on the Power3/4, whose performance
actually improves as the number of processors grows. Thisdause the communication overhead is rather
small, so that the improved cache usage dominates schjabitite that LU sustains the highest performance
of all NPB on the Power architectures, but it also has thedsghate of TLB misses on the Power3. This
suggests that the cost of a TLB miss is relatively small.

In sum, all NPB except LU suffer signi cant performance dedgmtion on both architectures when a node
is (nearly) fully saturated. AVL and especially VOR are afyty correlated with performance on the SX-6,
but the occurrence of irregular stride (requiring suppbdgaiher/scatter units) or many small messages also
have signi cant in uence. Except for CG with its irregularemory references, there is a strong correlation
between the smaller L1 cache on the Power4 (0.25 times thhed?ower3) and the number of L1 misses.
Nevertheless, L1 hits and TLB misses alone are weak predicfcqperformance on the Power3/4, whereas
communication volume and frequency play a signi cantlyglar role than on the SX-6. In a subsequent
study, more detailed performance indicators will be examiithat can more fully explain the observed
behavior.

5 Scienti c Applications

Six applications from diverse areas in scienti c computimgre chosen to measure and compare the perfor-
mance of the SX-6 with that of the Power3 and Power4. The egpiins are: TLBE, a fusion energy appli-
cation that performs simulations of high-temperaturemigsCactus, an astrophysics code that solves Ein-
stein's equations; OVERFLOW-D, a CFD production code tléwes the Navier-Stokes equations around
complex aerospace con gurations; PARATEC, a materialersm@ code that solves Kohn-Sham equations
to obtain electron wavefunctions; GTC, a particle-in-eglproach to solve the gyrokinetic Vlasov-Poisson
equations; and Mindy, a simpli ed molecular dynamics coldattuses the Particle Mesh Ewald algorithm.
The compiler options for running these six applicationslmted in Table 6. Performance results are re-
ported in M ops/s per processor, except where the origilgd@thm has been modi ed for the SX-6 (these
are reported as wall-clock time). As was the case for the M®B,and VOR values are shown for the SX-6,
and TLB and L1 values for the Power systems. All performanoalmers were obtained witipmcount

on the Power3/4 anffrace  on the SX-6.

| Application | Power3 and Power4 \ SX-6

TLBE -O3 -gtune=auto -garch=auto -C vopt

Cactus-ADM -O3 -gstrict -gtune=auto -garch=auto -C vopt

OVERFLOW-D | -O3 -g64 -gfixed -gnosave -C vsafe -f0 -size _t64
PARATEC -O3 -garch=auto -C vopt

GTC -O3 -gstrict -qtune=auto -garch=auto -f4 -C vopt -Wf,"-pvctl

-gqcache=auto -Q loopcnt=10000000 vwork=stack"

Mindy -O3 -gstrict -gtune=auto -garch=auto -f4 -C vopt

Table 6: Compiler options for running our application suitethe three target architectures.



6 Plasma Fusion: TLBE

Lattice Boltzmann methods provide a mesoscopic descrigtiche transport properties of physical systems
using a linearized Boltzmann equation. They offer an ehtievay to model turbulence and collisions in a
uid. The TLBE application [22] performs a 2D simulation ofgt-temperature plasma using a hexagonal
lattice and the BGK collision operator. Figure 3 shows amgxa of vorticity contours in the 2D decay of
shear turbulence simulated by TLBE.

Figure 3: TLBE simulated vorticity contours in the 2D decdyslear turbulence.

6.1 Methodology

The TLBE simulation has three computationally demandingpanents: computation of the mean macro-
scopic variables (integration); relaxation of the macopsc variables after colliding (collision); and prop-
agation of the macroscopic variables to neighboring gridtgsqstream). The problem is ideally suited for
vector architectures: the rsttwo steps sweep through alee@D grid in column-major order performing a
set of oating-point operations dependent only on locabmfation; the third step consists of a set of strided
copy operations. In addition, distributing the grid via a @8composition easily parallelizes the method.
The rst two steps require no communication, while the thias a regular, static communication pattern in
which the boundary values of the macroscopic variablesareamged.

6.2 Porting Details

After initial pro ling on the SX-6 using basic vectorizaticcompiler optionsC vopt ), only 280 M ops/s
(3.5% of peak) was achieved for a sm@df grid using a serial version of the code. Considering the majo
routine is computationally intensive and has no recurretiig was a poor result. THeace tool showed
that VOR was high (95%) and that the collision step domin#tedexecution time (96% of total); however,
AVL was only about 6. We found that the inner loop over the namif directions in the hexagonal lattice
had been vectorized, but not a loop over one of the grid dirmessinvoking the most aggressive compiler
ag (-C hopt ) did not help. Therefore, we rewrote the collision routinedoeating temporary vectors,
and inverted the order of two loops to ensure vectorizati@r one dimension of the grid. As a result, serial
performance improved by a factor of 7, and the parallel TLEBEsion was created by inserting the new
collision routine into the MPI version of the code.



6.3 Performance Results

Parallel TLBE performance using a production gri®?648& is presented in Table 7. The SX-6 results show
that TLBE achieves almost perfect vectorization in term&dE and VOR. The 2- and 4-processor runs

show similar performance as the serial version; howevegpmmneciable degradation due to memory-bank
con icts is observed when running eight MPI tasks. Theseictmdo not appear for a single-processor

run when the arrays are sized in the same manner as a singleftéme 8-way run; hence they are due to

interactions among all eight tasks executing on a singlenod

Power3 Power4 SX-6

P |[Mops/s| L1 | TLB |[Mops/s| L1 | TLB | Mops/s | AVL | VOR
70 90.5 | 0.500 250 58.2 | 0.069| 4060 256.0| 99.5
110 91.7 | 0.770 300 69.2 | 0.014| 4060 256.0| 99.5
110 91.7 | 0.750 310 71.7 | 0.013| 3920 256.0| 99.5
110 92.4 | 0.770 470 87.1 | 0.021| 3050 255.0| 99.2
16 110 92.6 | 0.730 460 88.7 | 0.019 — — —
32 — — — 440 89.3 | 0.076 — — —

AN

Table 7: Per-processor performance of TLBE 2048 grid.

For both the Power3 and Power4 architectures, the collisdakine rewritten for the SX-6 performed
slightly better than the original. On the cache-based nmashithe parallel TLBE showed higher M ops/s
(per CPU) compared with the serial version. This is due toudes of smaller grids per processor in the
parallel case, resulting in improved cache reuse. The murglex behavior on the Power4 is due to the
competitive effects of the three-level cache structure setdration of the SMP memory bandwidth. In
summary, using all eight CPUs on the SX-6 gives an aggregafermance of 24.4 G ops/s (38% of peak),
and a speedup factor of 27.7 (6.5) over the Power3 (Poweith) minimal porting overhead.

7 Astrophysics: Cactus

One of the most challenging problems in astrophysics is timarical solution of Einstein's equations

following from the Theory of General Relativity (GR): a sdtamupled nonlinear hyperbolic and elliptic

equations containing thousands of terms when fully expéndéde Albert Einstein Institute in Potsdam,
Germany, developed the Cactus code [1, 10] to evolve thasatiegs stably in 3D on supercomputers to
simulate astrophysical phenomena with high gravitationa¢s, such as the collision of two black holes
(see Figure 4) and the gravitational waves that radiate franhevent.

7.1 Methodology

In order to numerically solve Einstein's equations, it imgelly necessary to decompose the GR 4D for-
mulation (three spatial and one temporal dimension) intet @sequations describing the evolution of a 3D

slice of space-time in time — the so-called 3+1 split. Onénefearliest such splits lead to the ADM formal-

ism (used in Cactus), which consists of four constraint #gna and 12 evolution equations. The evolution
equations can be solved using a number of different nurarieghods, including staggered leapfrog, Mc-

Cormack, Lax-Wendroff, and iterative Crank-Nicholsonaties. The initial data for the evolution must be
chosen to obey the constraint equations, which can substbg e used to determine how far the numerical
solution has drifted from a correct solution to Einsteirgaations. Analytically, the evolution preserves the
constraints; however, there is usually some numerical. drif
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Figure 4: Visualization from a recent Cactus simulationmfraspiraling merger of two black holes.

The freedom to choose coordinates in the space-time slags|éo a corresponding set of “gauge”
functions in the ADM formalism: the lapse function, whichsdgbes the amount of coordinate time which
two points on adjacent space-time slices differ by; and th# gector, which describes the relationship
between spatial coordinates in adjacent slices. Thesditjeartan be chosen arbitrarily, and help prevent
problems in the numerical evolution of the physical vagsble.g. by preserving some property of the space-
time.

For performance evaluation, we focused on a core Cactus A@Nis the Fortran77-based ADM ker-
nel (BenchADM [9]), written when vector machines were mooenonon; consequently, we expect it to
vectorize well. BenchADM is computationally intensiveyatving 600 ops per grid point. The loop body
of the most numerically intensive part of the solver is lafggveral hundred lines of code). The enormous
size of this loop results in moderate register pressureyidemced by the number of register spills in the
Power3/4 assembly code. Normally, loop splitting is perfed to alleviate this register pressure, but the
expressions evaluated in the inner loop have such compleendiencies that any splitting arrangement re-
quires storage of intermediate results. Numerous pashptteto split this loop have yielded no bene ts
since the increased number of load/stores tends to outwieéghdvantages of reducing register spilling.

7.2 Porting Details

BenchADM vectorized almost entirely on the SX-6 in the r#tieanpt. However, the vectorization appears
to involve only the innermost of a triply nested looq ¥, andz-directions for a 3D evolution). The result-
ing effective vector length for the code is directly relatecthe x-extent of the computational grid. This
dependence led to some parallelization dif culties beeatl® typical block-oriented domain decomposi-
tions reduce the vector length, thereby affecting uni-pssor performance. In order to decouple parallel
ef ciency and uni-processor performance, the domain wasagosed using Z-slices.

7.3 Performance Results

Table 8 presents performance results for BenchADM @874 grid. The mild deterioration of performance
on the Power systems as the number of processors grows upigallié to the communication cost, with
a steep drop in performance as a Power4 node gets fully sadui@2 processors). Increasing the grid size
by just one point in each dimension 128 results in severe performance degradation due to cac@e-lin
aliasing. This is a well-understood problem with set-asdive caches that can be handled automatically
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Power3 Power4 SX-6

P |[Mops/s| L1 [ TLB [Mops/s | L1 | TLB | Mops/s | AVL | VOR
274 99.4 | 0.030 672 92.2 | 0.010| 3912 | 126.7| 99.6
236 99.4 | 0.030 582 92.6 | 0.010| 3500 | 126.7| 99.5
249 99.4 | 0.020 619 93.2 | 0.010| 2555 | 126.7| 99.5
251 99.4 | 0.030 600 92.4 | 0.010| 2088 | 126.7| 99.3
16 226 99.5 | 0.020 538 93.0 | 0.010 — — —
32 — — — 379 97.0 | 0.001 — — —

AN

Table 8: Per-processor performance of the Cactus BenchAé&rekon al27 grid.

by the compiler using array padding; however, the compiegswvere using could not infer a reasonable
padding to prevent the aliasing.

While for smaller grid sizes the SX-6 performance is mediptiiel27 grid uni-processor computation
returns an impressive 3.9 GFlops/s with a sizable AVL and &\@almost 100%. The SX-6 is immune
to the effects of power-of-two aliasing because of the atxserf cache memory. The vector memory sub-
system is not affected by bank con icts because most acseseestill unit stride. To date, SX-6's 49% of
peak performance is the best achieved for this benchmarkyouarent computer architecture. SX-6 multi-
processor performance deteriorates fairly rapidly dudnéorising cost of interprocessor synchronization;
however, the AVL and VOR are hardly affected. Performanaenters indicated that boundary exchange
accounts for 12% of the execution time for a 2-processor lbuhijncreases to 47% when running on eight
processors. We determined empirically that the high cobbahdary exchange on the SX-6 is most likely
due to latencies caused by the calling overhead and/or mgmyperations rather than any memory subsys-
tem de ciencies. When we arti cially doubled the size of theessages, the fraction of time spent in the
boundary exchange increased only from 12% to 14% (for a 2gssor run); if the communication were
predominantly bandwidth limited, the overhead would hasarly doubled.

8 Fluid Dynamics: OVERFLOW-D

OVERFLOW-D [23] is an overset grid methodology [12] for higtelity viscous Navier-Stokes CFD simu-
lations around realistic aerospace con gurations. Thdiegion can handle complex designs with multiple
geometric components, where individual body- tted grids aasily constructed about each component.
OVERFLOW-D is designed to simplify the modeling of problemuben components are in relative mo-
tion (dynamic grid systems). At each time step, the ow e@urat are solved independently on each grid
(“block™) in a sequential manner. Boundary values in grictidap regions are updated before each time
step, using a Chimera interpolation procedure. The code m#te differences in space, and a variety of
implicit/explicit time stepping.

8.1 Methodology

The MPI version of OVERFLOW-D (in F90) is based on the multadk feature of the sequential code,
which offers a natural coarse-grain parallelism. The satiglecode consists of an outer “time-loop” and
an inner “grid-loop”. The inter-grid boundary updates ir therial version are performed successively.
To facilitate parallel execution, grids are clustered igtoups; one MPI process is then assigned to each
group. The clustering strategy uses a connectivity testitispects for an overlap between a pair of grids
before assigning them to the same group, regardless ofzb®fthe boundary data or their connectivity to
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other grids. The grid-loop in the parallel implementatiamiins two levels, a loop over groups (“group-
loop”) and a loop over the grids within each group. The grtagp is executed in parallel, with each group
performing its own sequential grid-loop and inter-grid aps. The inter-grid boundary updates across the
groups are achieved via MPI. Further details can be founti3h [

8.2 Porting Details

The MPI implementation of OVERFLOW-D is based on the seqakwuersion, the organization of which
was designed to exploit early Cray vector machines. The $msie program structure is used on all three
target architectures except that the code was compiled thwthC vsafe option on the SX-6. A few
minor changes were made in some subroutines in an effort & speci c compiler requirements.

8.3 Performance Results

Our experiments involve a Navier-Stokes simulation of @orlynamics in the complex wake ow region
around hovering rotors. The grid system consisted of 41kisl@and approximately 8 million grid points.
Figure 5 presents a sectional view of the test grid and thicitgrmagnitude contours of the nal solution.

Figure 5: Sectional views of the OVERFLOW-D test grid systanad the computed vorticity magnitude
contours.

Table 9 shows execution times per time step (averaged ov&efp8) on the Power3, Power4, and SX-6.
The current MPI implementation of OVERFLOW-D does not allaw-processor runs. Results demonstrate
that the SX-6 outperforms the cache-based machines; intfectun time for eight processors on the SX-6
is less than three-fourths the 32-processor Power4 nunmadability is similar for both the Power4 and
SX-6 architectures, with computational ef ciency dectiagsfor a larger number of MPI tasks primarily
due to load imbalance. It is interesting to note that Poweedability exceeds that of the Power4. On
the SX-6, the relatively small AVL and limited VOR explain withe code achieves a maximum of only
7.8 G ops/s on eight processors. Reorganizing OVERFLOW-@ld achieve higher vector performance;
however, extensive effort would be required to modify thisquction code of more than 100K lines.
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Power3 Power4 SX-6

P| sec|] L1 [TLB | sec| L1 | TLB | sec|AVL | VOR
46.7 | 93.3 | 0.245| 17.1| 84.4 | 0.014| 55 | 87.2| 80.2
26.6 | 954 | 0.233| 9.4 | 87.5 | 0.010| 2.8 | 84.3| 76.0
13.2 | 96.6 | 0.187| 5.6 | 90.4 | 0.008| 1.6 | 79.0| 69.1
16 80| 98.2 | 0.143| 3.2 | 92.2 | 0.005| — — —
32| — — — 2.2 | 93.4 | 0.003| — — —

(e NN \V]

Table 9: Per-processor performance of OVERFLOW-D on a aniyrid point problem.

9 Materials Science: PARATEC

PARATEC (PARAllel Total Energy Code) [6] performs rst-migiples qguantum mechanical total energy cal-
culations using pseudopotentials and a plane wave basi3setapproach is based on Density Functional
Theory (DFT) that has become the standard technique in ialgtecience to calculate accurately the struc-
tural and electronic properties of new materials with a fuiantum mechanical treatment of the electrons.
Codes performing DFT calculations are among the largestwroers of computer cycles in centers around
the world, with the plane-wave pseudopotential approaatglthe most commonly used. Both experimental
and theory groups use these types of codes to study prapsuidd as strength, cohesion, growth, catalysis,
magnetic, optical, and transport for materials like nanmstires, complex surfaces, doped semiconductors,
and others. Figure 6 shows the induced current and chargtylencrystalized glycine, calculated using
PARATEC. These simulations were used to better understaciéar magnetic resonance experiments [25].

Figure 6: Visualization of induced current (white arrowsfaharge density (colored plane and grey sur-
face) in crystalized glycine, calculated using PARATEC][25

9.1 Methodology

PARATEC uses an all-band conjugate gradient (CG) approasblve the Kohn-Sham equations of DFT
to obtain the wavefunctions of the electrons. A part of tHewdations is carried out in real space and the
remainder in Fourier space using specialized parallel 3DsAB transform the wavefunctions. The code
spends most of its time (over 80% for a large system) in veadpplied BLAS3 and 1D FFTs on which the
3D FFTs are built. For this reason, PARATEC generally olstaimigh percentage of peak performance on
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different platforms. The code exploits ne-grained paghfm by dividing the plane wave components for
each electron among the different processors. For a revithisoapproach with applications, see [16, 19].

9.2 Porting Details

PARATEC, an MPI code designed primarily for massively gataystems, also runs on serial machines.
Since much of the computation involves vendor supplied FRIBLASS, an ef cient vector implemen-
tation of the code requires these libraries to vectorizd. Ww&hile this is true for the BLAS3 routines on
the SX-6, the standard FFTs (e.gFFT) run at a low percentage of peak. It is thus necessary to @se th
simultaneous 1D FFTs (e.ZFFTS) to obtain good vectorization. A small amount of code rawgitwas
required to convert the 3D FFT routines to simultaneous (tipie”) 1D FFT calls.

9.3 Performance Results

The results in Table 10 show scaling tests of a 250 Si-atokndygitem for a standard LDA run of PARATEC
with a 25 Ry cut-off using norm-conserving pseudopotestialhe simulations are for three CG steps of
the iterative eigensolver, and include the set-up and I&psshecessary to execute the code. A typical
calculation using the code would require 20 to 60 CG stepsiwearge the charge density.

Power3 Power4 SX-6

P |Mops/s| L1 | TLB |[Mops/s| L1 | TLB | Mops/s | AVL | VOR
915 98.3 | 0.166| 2290 95.6 | 0.106 5090 113.0| 98.0
915 98.3 | 0.168| 2250 95.5 | 0.104| 4980 112.0| 98.0
920 98.3 | 0.173| 2210 96.6 | 0.079| 4700 112.0| 98.0
911 98.3 | 0.180| 2085 95.9 | 0.024| 4220 112.0| 98.0
16 840 98.4 | 0.182 1572 96.1 | 0.090 — — —
32 — — — 1327 96.7 | 0.064 — — —

|~ N~

Table 10: Per-processor performance of PARATEC on a 25@d8it-aulk system.

Results show that PARATEC vectorizes well and achieves 6#peak on one processor of the SX-6.
The AVL is approximately half the vector register lengtht tith a high fraction of VOR. This is because
most of the time is spent in 3D FFTs and BLAS3. The loss in $ilitha to eight processors (53% of
peak) are due primarily to memory contention and initialesdt-up (including 1/0) that do not scale well.
Performance increases with larger problem sizes and morst€gs: for example, running 432 Si-atom
systems for 20 CG steps achieved 73% of peak on one processotr.

PARATEC runs ef ciently on the Power3; the FFT and BLAS3 riaes are highly optimized for this
architecture. The code ran at 61% of peak on a single procasd@t 56% on 16 processors. Larger physical
systems, such as the one with 432 Si-atoms, ran at 1.02 G ¢f8P%6 of peak) on 16 processors. On the
Power4, PARATEC sustains a much lower fraction of peak (44%ree processor) due to its relatively poor
ratio of memory bandwidth to peak performance. NonethetesPower4 32-processor SMP node achieves
high total performance, exceeding that of the 8-proces¥e8 8ode. The L1 hit rate is primarily determined
by the serial FFT and BLASS libraries; hence it does not vancimwith processor count. We conclude
that, due to the high computational intensity and use ofwpgd numerical libraries, these types of codes
execute ef ciently on both scalar and vector machines, auittthe need for signi cant code restructuring.
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10 Magnetic Fusion: GTC

The goal of magnetic fusion is the construction and opematioa burning plasma power plant producing
clean energy. The performance of such a device is deternbynéte rate at which the energy is transported
out of the hot core to the colder edge of the plasma. The Gyetiki Toroidal Code (GTC) [18] was devel-
oped to study the dominant mechanism for this transportasfitial energy, namely plasma microturbulence.
Plasma turbulence is best simulated by particle codes, ichndil the nonlinearities are naturally included.
Figure 7 presents a visualization of electrostatic padéniictuations in a global nonlinear gyrokinetic sim-
ulation of microturbulence in magnetically con ned plasna

Figure 7: Electrostatic potential uctuations of micrdiutence in magnetically con ned plasmas using
GTC.

10.1 Methodology

GTC solves the gyroaveraged Vlasov-Poisson (gyrokineystem of equations [17] using the particle-
in-cell (PIC) approach. Instead of interacting with eacheot the simulated particles interact with a self-
consistent electrostatic or electromagnetic eld desatibn a grid. Numerically, the PIC method scales as
N, instead ofN 2 as in the case of direct binary interactions. Also, the éqoatof motion for the particles
are simple ODEs (rather than nonlinear PDES), and can bedelsily (e.g. using Runge-Kutta). The main
tasks at each time step are: deposit the charge of eachipattithe nearest grid points (scatter); solve the
Poisson equation to get the potential at each grid pointutate the force acting on each particle from the
potential at the nearest grid points (gather); move thdgbestby solving the equations of motion; nd the
particles that have moved outside their local domain andateghem accordingly.

The parallel version of GTC performs well on massive sumgascsystems, since the Poisson equation
is solved as a local operation. The key performance bottleiethe scatter operation, a loop over the
array containing the position of each particle. Based onriacies position, we nd the nearest grid points
surrounding it and assign each of them a fraction of its anhargportional to the separation distance. These
charge fractions are then accumulated in another arraysddiéer algorithm in GTC is complicated by the
fact that these are fast gyrating particles, where motiaeseribed by charged rings being tracked by their
guiding center (the center of the circular motion).

10.2 Porting Details

GTC's scatter phase presented some challenges when pibrticgde to the SX-6 architecture. It is dif cult
to implement ef ciently due to its non-contiguous writesiteemory. The particle array is accessed sequen-
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tially, but its entries correspond to random locations ia simulation space. As a result, the grid array
accumulating the charges is accessed in random fashiariimgsn poor cache performance. This problem
is exacerbated on vector architectures, since many pegtidposit charges at the same grid point, causing
a classic memory dependence problem and preventing veation. We avoid these memory con icts by
using temporary arrays of vector length (256 words) to aedata the charges. Once the loop is completed,
the information in the temporary array is merged with the charge data; however, this increases memory
traf ¢ and reduces the ops/byte ratio.

Another source of performance degradation was a short loopiocated inside two large particle loops
that the SX-6 compiler could not vectorize. This problem walsed by inserting a vectorization directive,
fusing the inner and outer loops. Finally, I/O within the mkiop had to be removed to allow vectorization.

10.3 Performance Results

Table 11 shows GTC performance results for a simulation cming of 4 million particles and 1,187,392
grid points over 200 time steps. The geometry is a torus destby the con guration of the magnetic eld.
On a single processor, the Power3 achieves 10% of peak, thkilrower4 performance represents only 5%
of its peak. The SX-6 single-processor experiment runs &tV @ps/s, or only 9% of its theoretical peak.
This poor SX-6 performance is unexpected, considering ¢tetively high AVL and VOR values. We
believe this is because the scalar units need to computediwes for the scatter/gather of the underlying
unstructured grid. However, in terms of raw performance SX-6 still outperforms the Power3/4 by factors
of 4.6 and 2.5, respectively.

Power3 Power4 SX-6

P [Mops/s| L1 [ TLB [Mops/s | L1 | TLB | Mops/s | AVL | VOR
153 95.1 | 0.130 277 89.4 | 0.015 701 186.8| 98.0
155 95.1 | 0.102 294 89.8 | 0.009 653 184.8| 98.0
163 96.0 | 0.084 310 91.2 | 0.007 548 181.5| 97.9
167 96.6 | 0.052 326 92.2 | 0.007 391 175.4| 97.7
16 155 97.3 | 0.025 240 92.8 | 0.006 — — —
32 — — — 275 92.7 | 0.006 — — —

AN

Table 11: Per-processor performance of GTC on a 4-milliatigle simulation.

Parallel results demonstrate that scaling on the SX-6 isieatly as good as on the Power3/4. In fact,
both the Power3 and Power4 initially (through= 8) show superlinear speedup, a common characteristic
of cache-based machines. This is explained by the higheitldths and lower TLB misses with increasing
processor count. Superlinear scaling for a xed problenes s&annot be maintained past a certain number of
processors since all the data ultimately ts in cache whike¢dommunication-to-computation ratio continues
to increase. Limited scaling on the SX-6 is probably due &1tb decomposition which reduces the length
of the biggest vector loops as the number of processorsagese however, this is not the nal word. More
work is being done on GTC to improve its scalability and eéecy on vector architectures.

11 Molecular Dynamics: Mindy

Mindy is a simpli ed serial molecular dynamics (MD) C++ cqdderived from the parallel MD program
called NAMD [3]. The energetics, time integration, and lerfnats are identical to those used by NAMD.
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11.1 Methodology

Mindy's core is the calculation of forces betwenatoms via the particle mesh Ewald algorithm. QN 2)
complexity is reduced t®(N logN ) by dividing the problem into boxes, and then computing etstatic
interaction in aggregate by considering neighboring bokesghbor lists and a variety of cutoffs are used
to decrease the required number of force computations.

11.2 Porting Details

Modern MD codes such as Mindy present special challengesefiorization, since many optimization and
scaling methodologies are at odds with the ow of data slgtdibr vector architectures. The reduction of
oating point work from N2 to N logN is accomplished at the cost of increased branch complerity a
nonuniform data access. These techniques have a delstafi@et on vectorization; two strategies were
therefore adopted to optimize Mindy on the SX-6. The rsteamly decreased the number of conditions
and exclusions in the inner loops, resulting in more contmraverall, but less inner-loop branching. We
refer to this strategy adQEXCL

The second approach was to divide the electrostatic computeto two steps. First, the neighbor
lists and distances are checked for exclusions, and a temyplist of inter-atom forces to be computed is
generated. The force computations are then performed srishin a vectorizable loop. Extra memory
is required for the temporaries and, as a result, the ogs/lvgtio is reduced. This scheme is labeled
BUILD TEMP

Mindy uses C++ objects extensively, hindering the compiteidentify data-parallel code segments.
Aggregate datatypes call member functions in the force coatipn, which impede vectorization. Inlining
member functions of C++ classes is harder for a compiler thiaring C functions given the possibility of
inheritance, runtime templates, and virtual functionsmpoer directives were used to specify that certain
code sections contain no dependencies, allowing parttbrieation of those regions.

11.3 Performance Results

The case studied here is the apolipoprotein A-I molecule Esgure 8, a 92224-atom system important in
cardiac blood chemistry that has been adopted as a benclfiondakge-scale MD simulations on biological
systems.

Figure 8: The apolipoprotein A-I molecule, a 92224-atomesyssimulated by Mindy.
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Table 12 presents performance results of the serial Minglyrdhm. Neither of the two SX-6 optimiza-
tion strategies achieves high performance. N@EXCLapproach results in a very small VOR, meaning
that almost all the computations are performed on the scalitr The BUILD _TEMPstrategy (also used
on the Power3/4) increases VOR, but incurs the overheadccdased memory traf ¢ for storing temporary
arrays. In general, this class of applications is at odds véttorization due to the irregularly structured na-
ture of the codes. The SX-6 achieves only 165 M ops/s, or 2%ea#k, slightly outperforming the Power3
and trailing the Power4 by about a factor of two in run timefeEtively utilizing the SX-6 would likely
require extensive reengineering of both the algorithm &edbject-oriented code.

Power3 Power4 SX-6: NQEXCL SX-6: BUILD_TEMP
sec| L1 [TLB | sec| L1 | TLB | sec | AVL | VOR| sec| AVL | VOR

| 15.7] 99.8 [ 0.010] 7.8 | 98.8 [ 0.001| 19.7] 78.0| 0.03 | 16.1 | 134.0] 34.8 |

Table 12: Serial performance of Mindy on a 92224-atom sysiéth two different SX-6 optimization
approaches.

12 Summary and Conclusions

This paper presented the performance of the NEC SX-6 vemboepsor and compared it against the cache-
based IBM Power3 and Power4 superscalar architecturesssaarwide range of scienti c computations.
Experiments with a set of microbenchmarks demonstratedfdndow-level program characteristics, the
specialized SX-6 vector hardware signi cantly outperfaerthe commodity-based superscalar designs of
the Power3/4.

Next we examined the NAS Parallel Benchmarks, a well-undedsset of kernels representing key
areas in scienti c computations. These compact codes alious to perform the three main variations
of vectorization tuning: compiler ags, compiler direatis, and actual code modi cations. The resulting
optimized codes enabled us to identify classes of apptieatboth at odds with and well suited for vector
architectures, with performance ranging from 5.9% to 46%sesdk on a single SX-6 processor, and from
1.6% to 16% on a fully saturated node of eight processorsil@ipercentages of peak performance were
achieved on eight processors of the Power3 and Power4ughhihe top performing codes on vector and
cache systems were not the same. Absence of data depersdaribie main loops and long vector lengths in
FT produced the best results on the SX-6, whereas goodtipealdl small communication overhead made
LU the best performing code on the Power systems.

Several applications from key scienti c computing domaimere also evaluated; however, extensive
vector optimizations have not been performed at this tinieceSmost modern scienti ¢ codes are designed
for (super)scalar systems, we simply examined the effopired to port these applications to the vector
architecture. Table 13 summarizes the overall performasmded by SX-6 speedup against the Power4.
Results show that the SX-6 achieves high sustained perfarenéelative to theoretical peak) for a large
fraction of our application suite and, in many cases, sigamntly outperforms the scalar architectures.

The Cactus-ADM kernel vectorized almost entirely on the @) the rst attempt. The rest of our
applications required the insertion of compiler directivad/or minor code modi cations to improve the
two critical components of effective vectorization: lorgctor length and high vector operation ratio. Vector
optimization strategies included loop fusion (and loopdeang) to improve vector length; introduction of
temporary variables to break loop dependencies (both nebt@mpiler imagined); reduction of conditional
branches; and alternative algorithmic approaches. Fdicagipns such as TLBE, minor code changes were
suf cient to achieve good vector performance and a high getege of theoretical peak, especially for the
multi-processor computations. For OVERFLOW-D, we obtdifar performance on both the cache-based
and vector machines using the same basic code structure AHARrepresented a class of applications
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Application Scienti c Lines | Power3| Power4| SX-6 SX-6 Speedup vs.
Name Discipline of Code| % Pk %Pk | %Pk| P Power3| Power4
TLBE Plasma Fusion 1,500 7.3 90| 38.1| 8 27.8 6.5
Cactus-ADM Astrophysics 1,200 16.8 115| 26.1| 8 8.3 3.5
OVERFLOW-D | Fluid Dynamics 100,000 7.8 53| 12.2| 8 8.2 3.5
PARATEC Materials Science 50,000 60.7 40.1 | 52.8| 8 4.6 2.0
GTC Magnetic Fusion 5,000 11.1 6.3 49| 8 2.3 1.2
Mindy Molecular Dynamics 11,900 6.3 4.7 211 1.0 0.5

Table 13: Summary overview of application suite performeanc

relying heavily on highly optimized BLAS3 libraries. Forebe types of codes, all three architectures
performed very well due to the regularly structured, corapahally intensive nature of the algorithm. On
a single SX-6 processor, PARATEC achieved 64% of peak, WHIBE and Cactus-ADM were at 50%;
however, TLBE showed a factor of 58.0 (16.2) performancerav@ment over the Power3 (Power4).
Finally, we presented two applications with poor vectorfgmnance: GTC and Mindy. They feature
indirect addressing, many conditional branches, and leopetl data-dependencies. These patrticle-in-cell
and particle mesh Ewald algorithms are representativeartspcomputational methods at odds with vector
parallelism, since multiple particle forces may potemtiabntribute to the energy calculation at a particular
grid point. Effectively vectorizing these applicationgjuges the removal of potential data dependencies
through techniques such as copied temporary arrays, leasticting, or graph coloring. However, these
code transformations may increase the vector ef cienchi@tbst of signi cant computational (or memory)
overheads, thus limiting overall ef cacy. For Mindy, an #ilthal problem was the use of C++ objects,
which made it dif cult for the compiler to identify data-paltel loops. Effectively utilizing the SX-6 would
likely require extensive reengineering of both the aldurnitand the implementation for these applications.
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